Living Polymerization of α -Olefins Using Ni^{II} $-\alpha$ -Diimine Catalysts. Synthesis of New Block Polymers Based on α -Olefins

Christopher M. Killian, Daniel J. Tempel, Lynda K. Johnson, and Maurice Brookhart*

> Department of Chemistry University of North Carolina at Chapel Hill Chapel Hill, North Carolina 27599-3290

> > Received July 22, 1996

Living polymerization techniques¹ allow the synthesis of polymers with predictable molecular weights and narrow molecular weight distributions, end-functionalized polymers and well-defined block copolymers. While intense efforts have recently focused on development of homogeneous single-site, early metal d⁰ and d⁰fⁿ catalysts for polymerization of ethylene and α -olefins (particularly propylene),² rapid chain transfer processes in these systems have limited their use as living polymerization catalysts. The living polymerization of α -olefins has been achieved only in rare instances and at very low temperatures.^{3,4} We describe here the development of a procedure for living polymerization of α -olefins based on recently reported Ni^{II}- α -diimine catalysts⁵ and application of this procedure to the synthesis of diblock and triblock poly(α -olefins).⁶

As previously reported, catalysts derived from [ArN=C-(R)-C(R)=NAr]NiBr₂ (1) plus methylaluminoxane (MAO) are quite active for the polymerization of α -olefins in toluene (eq 1).⁵ Additional examples of polymerization at 23 °C using

catalyst precursors **1a** and **1b** are shown in Table 1, entries 1, 3, 7–9, 11, 13, and 15. Polymerization of propylene (1 atm) yields polypropylene with molecular weight distribution (MWD) of 1.44 (entry 1) for **1a**/MMAO⁷ and 1.59 (entry 11) for **1b**/MAO. Polymerization of 1-hexene (>2 M in toluene) gives poly(1-hexene) with M_w/M_n values in the range of 1.4–1.8 (entries 6–8). While reasonably narrow, these molecular weight

(7) MMAO is a modified methylaluminoxane activator containing 25% isobutyl aluminoxane.

Figure 1. GPC trace of poly(1-hexene) prepared by complex 1a + MAO at -10 °C.

Figure 2. Plot of M_n and M_w/M_n as a function of reaction time for propylene polymerization at -10 °C.

distributions suggest chain transfer is significant under these conditions. However, when polymerizations are carried out at somewhat lower temperature (-10 °C) and low monomer concentrations (<1 M), poly(α -olefins) are produced with very narrow molar mass distributions suggesting a living polymerization.⁸ For example, polymerization of propylene with **1a**/MMAO at -10 °C (1 atm, 60 min) yields polypropylene ($M_n = 161\ 000$) with M_w/M_n of 1.13 while polymerization of 1-hexene (0.8 M, -10 °C) yields poly(1-hexene) ($M_n = 44\ 000$) with $M_w/M_n = 1.09$. A GPC trace of the poly(1-hexene) prepared under these conditions is shown in Figure 1.

To further confirm living polymerization, M_n and M_w/M_n values were monitored as a function of conversion for polymerization of propylene with **1a**/MMAO at -10 °C. As shown in Figure 2, number average molecular weight increases linearly with time over a broad molecular weight range (25K to 225K) while the molecular weight distribution remains low (ca. 1.1), clearly indicative of a living polymerization.¹

During polymerization, a significant fraction of α -olefin insertions occur in a 2,1 fashion. Metal migration to the terminal carbon and subsequent insertion results in enchainment of α -olefins in a 1, ω fashion (eq 2).^{5,9} This process has several

consequences. The resulting polymers contain fewer branches than expected from sequential 1,2-insertions¹⁰ and linear, unbranched segments can be incorporated along the main chain resulting in crystalline domains. The length of the linear

^{(1) (}a) Odian, G. G. *Principles of Polymerization*, 3rd ed.; John Wiley & Sons, Inc.: New York, 1991. (b) Webster, O. W. *Science* **1991**, 251, 887.

⁽²⁾ For leading references, see: (a) Brintzinger, H. H.; Fischer, D.; Mülhaupt, R.; Rieger, B.; Waymouth, R. M. Angew. Chem., Int. Ed. Engl. 1995, 34, 1143. (b) Giardello, M. A.; Eisen, M. S.; Stern, C. L.; Marks, T. J. J. Am. Chem. Soc. 1995, 117, 12114-12129. (c) Mitchell, J. P.; Hajela, S.; Brookhart, S. K.; Hardcastle, K. I.; Henling, L. M.; Bercaw, J. E. J. Am. Chem. Soc. 1996, 118, 1045-1053. (d) Ewen, J. A.; Jones, R. L. J. Am. Chem. Soc. 1988, 110, 6255-6256. (e) Kaminsky, W.; Külper, K.; Brintzinger, H. H.; Wild, F. R. W. P. Angew. Chem., Int. Ed. Engl. 1985, 24, 507-508. (f) Waymouth, R. M.; Coates, G. W. Science 1995, 267, 217. (g) Wu, Z.; Jordan, R. F.; Petersen, J. L. J. Am. Chem. Soc. 1995, 117, 5867-5868.

^{(3) (}a) Doi, Y.; Ueki, S.; Keii, T. *Macromolecules* **1979**, *12*, 814–819. (b) Doi, Y.; Hizal, G.; Soga, K. *Makromol. Chem.* **1987**, *188*, 1273–1279 and references therein.

⁽⁴⁾ For examples of living polymerization of ethylene, see: (a) Brookhart, M.; DeSimone, J. M.; Grant, B. E.; Tanner, M. J. *Macromolecules* **1995**, 28, 5378–5380 and references therein. (b) Mashima, K.; Fujikawa, S.; Urata, H.; Tanaka, Y.; Urata, H.; Oshiki, T.; Tanaka, E.; Nakamura, A. *Organometallics* **1995**, *14*, 2633–2640.

⁽⁵⁾ Johnson, L. K.; Killian, C. M.; Brookhart, M. J. Am. Chem. Soc. **1995**, 117, 6414-6415.

⁽⁶⁾ This work was reported in part at 211th National ACS Meeting New Orleans, LA; Inorganic Division, Abstr. 261.

⁽⁸⁾ For ethylene homopolymerization under these conditions chain transfer is significant. Polyethylene prepared at -20 °C using **1a** has a MWD of 1.48, while polyethylene prepared at -40 °C has a MWD of 1.39.

⁽⁹⁾ Details of the microstructure of the poly(α -olefins) and the mechanism of α -olefin polymerization will be the subject of a future publication: S. J. McLain, E. McCord, M. Brookhart, D. J. Tempel, L. K. Johnson, C. M. Killian.

⁽¹⁰⁾ Exclusive 1,2-enchainment would result in polypropylene with 333 branches/1000 carbons, poly(1-hexene) with 167 branches/1000 carbons, and poly(1-octadecene) with 56 branches/1000 carbons.

Table 1. α-Olefin Polymerization Data

			reaction c	onditions		polymer properties			
entry	catalyst ^a	monomer ^e	time (min)	temp (°C)	TOF (per h)	$10^{-3}M_{\rm n}^{\ b}$	$M_{\rm w}/M_{\rm n}$	branches/1000 C ^c	therm anal. $(^{\circ}C)^d$
1	1a/MMAO	P (1atm)	60	23	3000	190	1.44	272	$-24(T_{\rm g})$
2	1a/MMAO	P (1atm)	60	-10	2500	160	1.13	297	$-16(T_{\rm g})$
3	1a/MMAO	H (0.8 M)	60	23	1400	92	1.55	120	-57 ($T_{\rm g}$), -17 ($T_{\rm m}$)
4	1a/MMAO	H (0.8 M)	60	-10	560	36	1.18	145	$-49(T_{\rm g})$
5	1a/MAO	H (0.8 M)	60	-10	530	44	1.09	135	$-51(T_{\rm g})$
6	1a/MAO	H (6.4 M)	30	-10	1400	91	1.42	160	$-44 (T_{g})$
7	1a/MAO	H (3.2 M)	30	23	2800	84	1.54	126	$-52(T_{\rm g})$
8	1a/MAO	H (6.0 M)	30	23	2500	71	1.80	125	$-51(T_{\rm g})$
9	1a/MMAO	O (0.3 M)	60	23	300	87	1.20	45	56 (T _m)
10	1a/MMAO	O (0.3 M)	60	0	180	45	1.09	50	33 (T _m)
11	1b/MAO	P(1atm)	60	23	1300	60	1.59	159	$-55(T_{\rm g})$
12	1b/MAO	P(1atm)	60	-10	660	36	1.27	214	$-50(T_{g})$
13	1b/MAO	H (0.8M)	60	23	1000	70	1.62	73	$-49 (T_{\rm g}), 34 (T_{\rm m})$
14	1b/MAO	H (0.8M)	60	-10	260	26	1.15	118	$-61 (T_{\rm g})$
15	1b/MAO	O (0.3 M)	60	23	310	68	1.22	33	$78 (T_{\rm m})^{-1}$
16	1b/MAO	O (0.3 M)	120	-10	25	19	1.14	39	32 ($T_{\rm m}$), 60 ($T_{\rm m}$) ^f

^{*a*} Ni complex (0.017 mmol) activated with 100 equiv of MAO or MMAO; toluene (entries 1–6 and 9–10 total volume toluene and monomer equals 50 mL; entries 7–8 and 11–16 total volume toluene and monomer equals 100 mL). ^{*b*} Molecular weight data was determined by GPC vs polystyrene standards. ^{*c*} Total branching was determined by ¹H NMR spectroscopy (accurate to *ca.* 2%). ^{*d*} T_m and T_g were determined by differential scanning calorimetry (DSC). ^{*e*} Propylene (P), 1-hexene (H), and 1-octadecene (O). ^{*f*} Two melt transitions have been verified for poly(1-octadecene) by dynamic mechanical analysis.

Table 2. Synthesis of α-Olefin Block Polymers (A-B and A-B-A)

entry	catalyst ^a precursor	block polymer ^b	reaction time (block-min)	$10^{-3}M_{\rm n}{}^c$	$M_{ m w}/M_{ m n}$	therm anal. $(^{\circ}C)^d$
1	1 a	P-b-H	A-30/B-30	159	1.11	$-18 (T_{g})$
2	1 a	P- <i>b</i> -H	A-30/B-60	163	1.13	$-42 (T_g), -25 (T_g)$
3	1 a	O- <i>b</i> -P- <i>r</i> -O- <i>b</i> -O	A-40/B-20/A-40	60	1.09	$9(T_{\rm m}), 37(T_{\rm m})$
4	1 a	O- <i>b</i> -P- <i>r</i> -O- <i>b</i> -O	A-95/B-60/A-150	253	1.17	$-11 (T_{\rm m}), 40 (T_{\rm m}), -38 (T_{\rm g})$
5	1b	O- <i>b</i> -P- <i>r</i> -O- <i>b</i> -O	A-130/B-30/A-140	56	1.24	$8(T_{\rm m}), 53(T_{\rm m})$
6	1b	O- <i>b</i> -P- <i>r</i> -O- <i>b</i> -O	A-250/B-60/A-260	112	1.43	$0 (T_{\rm m}), 69 (T_{\rm m}), -52 (T_{\rm g})$

^{*a*} Complex (0.017 mmol) activated with 100 equiv of MMAO; toluene; entries 1 and 2 temperature is -15 °C, entries 3–6 temperature is -10 °C. ^{*b*} Propylene (P), 1-hexene (H), and 1-octadecene (O). ^{*c*} Molecular weight data was determined by GPC vs polystyrene standards. ^{*d*} $T_{\rm m}$ and $T_{\rm g}$ were determined by differential scanning calorimetry (DSC).

segments increases with the chain length of the α -olefin and results in increasing melt transition temperatures in these semicrystalline polymers.¹¹ Furthermore, the ratio of 1,2- versus 2,1-insertion is sensitive to the nature of the α -diimine ligand. Catalyst **1b**/MAO exhibits a higher fraction of 2,1-insertions than **1a**/MAO. Poly(1-octadecene) produced by **1b**/MAO at 23 °C (entry 15) exhibits fewer branches (33 branches/1000 carbon atoms) and a higher T_m (78 °C) than the polymer produced by **1a**/MMAO (entry 9, 45 branches/1000 carbon atoms, $T_m = 56$ °C).

The living nature of these polymerizations, coupled with the variation in polyolefin properties as a function of α -olefin chain length and ligand structure, permits the synthesis of a variety of unique diblock and triblock polymers. Several examples are shown in Table 2. Sequential monomer addition of propylene and 1-hexene at -15 °C to catalyst **1a**/MMAO results in polypropylene-*b*-poly(1-hexene) with a MWD of 1.13. An overlay of the monomodal GPC elution curves for the polypropylene A block ($M_n = 85\ 000$, $M_w/M_n = 1.12$) and the final polypropylene-*b*-poly(1-hexene) A-B diblock ($M_n = 163\ 000$, $M_w/M_n = 1.13$) clearly shows a shift to shorter retention times, indicating the clean preparation of a diblock polymer under these conditions (see Supporting Information).

The preparation of α -olefin based A-B-A triblock copolymers where the semicrystalline A block is based on a long-chain α -olefin and the amorphous B block is derived from propylene provides a methodology for the synthesis of elastomeric polyolefins. For example, treatment of catalyst **1a**/MMAO with 1-octadecene at -10 °C for 95 min and then addition of 1 atm of propylene followed by the formation of a second block of poly(1-octadecene) results in the formation of a well-defined high molecular weight elastomeric A-B-A triblock copolymer (see Table 2, entry 4).¹² An analogous preparation using catalyst precursor **1b** + MMAO results in a triblock copolymer in which the A blocks have a melt transition temperature of 69 °C, illustrating the increase in 1, ω -insertion for this catalyst system (entry 6). These triblock polymers are highly elastic and qualitatively show good elastic recovery.

In summary, we have developed procedures for using α -diimine Ni^{II}-based catalysts for the living polymerization of α -olefins. In addition, this work has been extended to the development of a new synthetic strategy for the preparation of near monodisperse elastomeric α -olefin-based block copolymers. The microstructures of these polymers are unique, and they exhibit physical properties unlike those of poly(α -olefins) made by early metal catalysts. Details of the physical properties of these polymers for preparation of elastomeric polyolefins will be the subject of a future paper.

Acknowledgment is made to the National Science Foundation (CHE-9412095) and DuPont for financial support. Partial support was provided by a NSF postdoctoral fellowship to L.K.J. GPC analyses were provided by DuPont; DSC results were obtained in the J. M. DeSimone laboratory (Richard Phillips).

Supporting Information Available: Details of catalyst and polymer synthesis and characterization (9 pages). See any current masthead page for ordering and Internet access instructions.

JA962516H

⁽¹¹⁾ Incorporation of linear segments also lowers T_g relative to atactic polymers prepared from Ziegler–Natta catalysts. For example, "normal" atactic polypropylene exhibits a T_g of -18 °C, whereas the T_g of polypropylene prepared from these catalysts ranges from -16 to -55 °C.

⁽¹²⁾ Since 1-octadecene is not removed during formation of the B block, this block is actually a random polypropylene/octadecene block. Propylene is much more reactive than 1-octadecene thus a much higher fraction of propylene relative to 1-octadecene is incorporated into the polymer. This random block exhibits a low T_m (see Table 2) whereas polypropylene prepared under these conditions exhibits no T_m (see Table 1).